Bioelectricity and Biomagnetism - EB+MEMAT

Ano letivo: 2019-2020
Specification sheet

Specific details
course codecycle os studiesacademic semestercredits ECTSteaching language

Learning goals
Deepening of knowledge in a fundamental area for the understanding of bioelectricity and of biomagnetism phenomena.
Capacity of search and use of bibliography, to organize a coherent body of information on this area.
Capacity of problem solving, including the development of the required mathematical competences.
Capacity to implement and understand simple experiments related with the unit contents.
Contribution to the increase of general scientific culture, motivating to study other areas where the electromagnetism has important applications.

Competence in oral and written communication
Competence in information management
Competence in critical reasoning
Attention to quality
Competence in practical application of theoretical knowledge
Competence in analysis and synthesis
Knowledge of a foreign language
Competence on problem solving
1. Bioelectricity
1.1. Electric properties of the cell
1.2. Electric field and electric potential
1.3. Charge distribution in a resting cell
1.4. Passive transmission of an electric signal in a nerve cell
1.5. Non-linear electric response of an excitable cell
1.6. Measurement of extra-cellular potentials
1.7. Physiological effects of an external current

2. Biomagnetism
2.1. Magnetic induction field.
2.2. Magnetic fields associated with the electric activity of heart, brain and nerve fibers
2.3. Measurement of magnetic susceptibility in physiological systems.

3. Electromagnetic radiation
3.1. Laws of Faraday and Lenz
3.2. Maxwell equations in vacuum
3.3. Production and detection of electromagnetic waves
3.4. Non-ionizing electromagnetic radiation

4. Electric circuits: transient response in different circuits types
Physics I, Physics II; Mathematical Analysis I, Mathematical Analysis II; Cellular and Molecular Biology
Generic skills to reach
. Competence in oral and written communication;
. Competence in information management;
. Critical thinking;
. Quality concerns;
. Competence in applying theoretical knowledge in practice;
. Competence in analysis and synthesis;
. Knowledge of a foreign language;
. Competence to solve problems;
. Competence to communicate with people who are not experts in the field;
. Self-criticism and self-evaluation;
(by decreasing order of importance)
Teaching hours per semester
laboratory classes30
total of teaching hours75

Laboratory or field work20 %
Assessment Tests80 %

Bibliography of reference
+ Campo Electromagnético, L. Brito, M. Fiolhais e C. Providência, Ed. McGraw-Hill de Portugal, 1999.

+ Electromagnetic Fields, R. K. Wangsness, 2nd ed., John Wiley & Sons, N.Y., 1979.

+ Intermediate Physics for Medicine and Biology, R. K. Hobbie, 3rd ed., Springer-Verlag, N.Y., 1997.

+ Introduction to Electrodynamics, D. J. Griffiths, 3rd ed., Prentice Hall International, Inc., 1999.

+ Physics With Illustrative Examples From Medicine and Biology Electricity and Magnetism, G. B. Benedek e F. M. H. Villars, 2nd ed., Springer-Verlag, N. Y. Inc., 2000.
Teaching method
Lectures presenting the main concepts, with the right approach to this unit.
Lectures to discuss and solve problems aiming to connect the studied concepts with practical examples, orders of magnitude, and estimations of physics quantities specific to the area of bioelectricity and biomagnetism.
Laboratory classes where the students apply the theoretical concepts in elementary experiments.
Support of the students individual effort in the search of theoretical and experimental information, and in its systematic analysis.
Resources used
Equipamento experimental existente nos laboratórios didácticos do Departamento de Física.