fisica.uc.pt • Departamento de Física • Universidade de Coimbra
DEPT. DE FÍSICA
uc  ›  fctuc  ›   fisica  ›   course specifications
fisica.uc.pt
o dept de física
pessoas
ensino
•lic. e mestrado
•doutoramento
•prog. erasmus
investigação
estudar aqui
actividades
contactos
 
2019 - 2020 ↑↓
escolha o ano lectivo:
2019.2020
2018.2019
2017.2018
2016.2017
2015.2016
2014.2015
2013.2014
2012.2013
2011.2012
2010.2011
2009.2010
2008.2009
2007.2008
2006.2007
2005.2006
2004.2005
2003.2004
2002.2003
CALENDAR
SUBJECTS
TIMETABLES
ROOMS
TEACHING MAP
EXAMS MAP
      
Systems of Cognitive Vision
EB3
2019 . 2020  - 2º semestre
SYNOPSIS SYLLABUS TIMETABLE ASSESSMENT SPECIFICATION


Specification sheet

Specific details
course codecycle os studiesacademic semestercredits ECTSteaching language
3000013126pt,en


Learning goals
The goals and outcomes of this unit include learn how to extract information from images so that it is possible to estimate 3D world and object structure, object motion (including velocities and displacements), object recognition, shapes and activities. The techniques that the student has to learn are based on learning and classification.
Syllabus
Introduction to probability, Fitting probability models, Learning and inference in vision, Regression and Classification models, Graphical Models, Models for chains, trees and grids, Models for shape, style and identity, Models for visual words
Prerequisites
Algebra, Differential Calculus, Probability
Generic skills to reach
. Competence in analysis and synthesis;
. Knowledge of a foreign language;
. Competence to solve problems;
. Critical thinking;
. Creativity;
. Competence in organization and planning;
. Competence for working in group;
. Adaptability to new situations;
. Quality concerns;
. Research skills;
(by decreasing order of importance)
Teaching hours per semester
seminar10
tutorial guidance15
total of teaching hours25

Assessment
Research work100 %
assessment implementation in 20192020
Assessment Evaluation is either performed based on Matlab computational projects (100%) or Matlab computational projects (50%) and a final test (50%): 100.0%

Bibliography of reference
Computer Vision: Models, learning and inference, Simon Prince

Cognitive Vision Systems: Sampling the Spectrum of Approaches (Lecture Notes in Computer Science), Henrik I. Christensen and Hans-Hellmut Nagel .

The Cognitive Neuroscience of Vision (Fundamentals of Cognitive Neuroscience), Martha J. Farah

Active Vision: The Psychology of Looking and Seeing (Oxford Psychology Series), John M. Findlay and Iain D. Gilchrist.

Pattern Recognition and Machine Learning, Christopher M. Bishop

Learning with Kernels, Bernhard Schlkopf and Alexander J. Smola
Teaching method
Teaching methods include lectures by the professor, presentations of specific topics by the students and also tutorial supervision.
Resources used
Software de simulação (matlab).

print-version

Departamento de Física, UC ©2013
Contactos    Sugestões    Aviso legal     Emergência
Search     Português    Login
acesso restrito a:
fisica.uc.pt
www.uc.pt
infordocente.uc.pt
inforestudante.uc.pt
lugus.uc.pt
Search     Português    Login
acesso restrito a:
fisica.uc.pt
www.uc.pt
infordocente.uc.pt
inforestudante.uc.pt
lugus.uc.pt